No menu items!

Symmetric Histogram – Definition & Examples

-

A symmetric histogram is a histogram for which the mean and the median are equal. If we draw a line through the center of a symmetric histogram it will get divided into two equal halves. The two halves will be identical mirror images of each other. A symmetric histogram is said to have zero skewness (no skewness).

Unimodal Symmetric Histogram:

If the symmetric histogram has a single “peak” then the distribution is said to be a unimodal symmetric histogram. The word “uni” means one which refers to the fact that the histogram has a unique modal value.

Example:

Consider the following set of data values given in the table below:

Class MarkFrequency
0 – 103
10 – 205
20 – 307
30 – 409
40 – 507
50 – 605
60 – 703

On graphing the above table values we get a histogram as shown below:

Unimodal Symmetric Histogram
Unimodal Symmetric Histogram Example

The graph is clearly symmetric about the line drawn through the middle. The peak is attained at the median which is equal to 35. We can calculate and check that the mean value is also equal to 35.

Bimodal Symmetric Histogram:

If the histogram has two “peaks” then we say that it is a bimodal symmetric histogram. The prefix “bi” means two indicating there are two modal values. Note that the heights of the two peaks in a symmetric histogram must be equal in order for the graph to be symmetric.

Example:

Consider the following set of data values given in the table below:

Class MarkFrequency
0 – 102
10 – 204
20 – 306
30 – 404
40 – 502
50 – 604
60 – 706
70 – 804
80 – 902

On graphing the above table values we get a histogram as shown below:

Bimodal Symmetric Histogram
Bimodal Symmetric Histogram Example

Notice that there are two peaks at the values 25 and 65. These are the two modal values. The median and the mean are both equal to 45. Note that the red line divides the histogram into two equal parts showing that the graph is indeed symmetric.

Real Life Example of a Symmetric Histogram:

If we were to plot the heights of all the adult males living in a particular city then the graph would be roughly symmetrical. This is because the vast majority of people would have an average height which would give us a “peak” in the center of the histogram. The number of short and tall people would be distributed roughly equally to the left and right of our peak giving us a “bell” shaped curve.

Normal Distribution Curve
Bell Shaped Curve
Summary
Article Name
Symmetric Histogram - Definition & Examples
Description
A symmetric histogram is a histogram for which the mean and the median are equal. If we draw a line through the center of a symmetric histogram it will get divided into two equal halves. The two halves will be identical mirror images of each other.
Publisher Name
allthingsstatistics.com

Hey 👋

I'm currently pursuing a Ph.D. in Maths. Prior to this, I completed my master's in Maths & bachelors in Statistics.

I created this website for explaining maths and statistics concepts in the simplest possible manner.

If you've found value from reading my content, feel free to support me in even the smallest way you can.



Share this article

Recent posts

Popular categories

LEAVE A REPLY

Please enter your comment!
Please enter your name here

Recent comments